Analyses of microRNA (miRNA) expression signatures obtained by RNA sequencing revealed that some passenger miRNAs (miR-144-5p, miR-145-3p, miR-149-3p, miR-150-3p, and miR-199a-3p) acted as anti-tumor miRNAs in several types of cancer cells. The involvement of passenger strands in the pathogenesis of human cancer is a novel concept. Based on the miRNA signature of bladder cancer (BC) obtained by RNA sequencing, we focused on both strands of the miR-223-duplex (miR-223-5p and miR-223-3p) and investigated their functional significance in BC cells. Ectopic expression of these miRNAs showed that both miR-223-3p (the guide strand) and miR-223-5p (the passenger strand) inhibited cancer cell migration and invasion of BC cells. The role of miR-223-5p (the passenger strand) has not been well studied. Combining gene expression studies and in silico database analyses, we demonstrated the presence of 20 putative target genes that could be regulated by miR-223-5p in BC cells. Among these targets, high expression of five genes (ANLN, INHBA, OIP5, CCNB1, and CDCA2) was significantly associated with poor prognosis of BC patients based on The Cancer Genome Atlas (TCGA) database. Moreover, we showed that a gene (ANLN) encoding a multifunctional actin-binding protein was directly regulated by miR-223-5p in BC cells. Overexpression of ANLN was observed in BC clinical specimens and high expression of ANLN was significantly associated with poor prognosis of BC patients. We suggest that studies of regulatory cancer networks, including the passenger strands of miRNAs, may provide new insights into the pathogenic mechanisms of BC.
Read full abstract