BackgroundMicroRNAs (miRNAs) are short, non-coding RNA molecules that act as regulators of gene expression. Circulating blood miRNAs offer great potential as cancer biomarkers. The objective of this study was to correlate the differential expression of miRNAs in tissue and blood in the identification of biomarkers for early detection of colorectal cancer (CRC).MethodsThe study was divided into two phases: (I) Marker discovery by miRNA microarray using paired cancer tissues (n?=?30) and blood samples (CRC, n?=?42; control, n?=?18). (II) Marker validation by stem-loop reverse transcription real time PCR using an independent set of paired cancer tissues (n?=?30) and blood samples (CRC, n?=?70; control, n?=?32). Correlation analysis was determined by Pearson’s test. Logistic regression and receiver operating characteristics curve analyses were applied to obtain diagnostic utility of the miRNAs.ResultsSeven miRNAs (miR-150, miR-193a-3p, miR-23a, miR-23b, miR-338-5p, miR-342-3p and miR-483-3p) have been found to be differentially expressed in both tissue and blood samples. Significant positive correlations were observed in the tissue and blood levels of miR-193a-3p, miR-23a and miR-338-5p. Moreover, increased expressions of these miRNAs were detected in the more advanced stages. MiR-193a-3p, miR-23a and miR-338-5p were demonstrated as a classifier for CRC detection, yielding a receiver operating characteristic curve area of 0.887 (80.0% sensitivity, 84.4% specificity and 83.3% accuracy).ConclusionDysregulations in circulating blood miRNAs are reflective of those in colorectal tissues. The triple miRNA classifier of miR-193a-3p, miR-23a and miR-338-5p appears to be a potential blood biomarker for early detection of CRC.
Read full abstract