Populus tomentosa, a deciduous tree species distinguished by its significant economic and ecological value, enjoys a wide-ranging natural distribution. However, its long juvenile period severely restricts the advancement of breeding work. The SPL gene family, a distinctive class of transcription factors exclusive to the plant kingdom, is critical in various processes of plant growth and development. The miR156-SPL molecular module stands as an indispensable regulatory mechanism in the transition from the vegetative juvenile phase to the adult phase in plants. Consequently, this research endeavored a methodical and exhaustive exploration of the SPL gene family within the P.tomentosa species, synergistically integrating the miR156 family into the analysis. A total of 56 PtSPL genes were identified and subjected to a comprehensive analysis of their gene structure, conserved motifs, collinearity relationships, chromosomal localization, and promoter cis-acting elements. Further analysis of gene expression profiles confirmed the pivotal role of PtSPLs in the reproductive phase and tissue development of P. tomentosa. In addition, 11 members of miR156 in P. tomentosa were identified and their sequences analyzed, elucidating the miR156-SPL regulatory network. The target relationship between miR156k and PtSPLs was further validated by detecting the expression levels of PtSPLs in transgenic poplars overexpressing 35S::MIR156k. This comprehensive study lays a robust theoretical foundation for the continued exploration and application of the SPL genes in P. tomentosa, opening avenues for future research and potential advancements in plant biology and breeding strategies.
Read full abstract