Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. There are currently no effective interventions to slow down or prevent the occurrence and progression of AD. Neutrophil extracellular traps (NETs) have been proven to be tightly linked to AD. This project attempted to identify hub genes for AD based on NETs. Gene expression profiles of the training set and validation set were downloaded from the Gene Expression Omnibus (GEO) database, including non-demented (ND) controls and AD samples. NET-related genes (NETRGs) were collected from the literature. Differential analysis identified 21 AD differentially expressed NETRGs (AD-DE-NETRGs) majorly linked to functions such as defense response to bacterium as well as pathways including IL-17 signaling pathway, as evidenced by enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein-protein interaction (PPI) network, Minutia Cylinder-Code (MCC) algorithm, and molecular complex detection (MCODE) algorithm in the CytoHubba plug-in were employed to identify five hub genes (NFKBIA, SOCS3, CCL2, TIMP1, ACTB). Their diagnostic ability was validated in the validation set using receiver operating characteristic (ROC) curves and gene differential expression analysis. A total of 16 miRNAs and 132 lncRNAs were predicted through the mirDIP and ENCORI databases, and a lncRNA-miRNA-mRNA regulatory network was constructed using Cytoscape software. Small molecular compounds such as Benzo(a)pyrene and Copper Sulfate were predicted to target hub genes using the CTD database. This project successfully identified five hub genes, which may serve as potential biomarkers for AD, proffering clues for new therapeutic targets.
Read full abstract