Abstract
Minutia Cylinder Code (MCC) is an effective, high-quality representation of local minutia structures. MCC templates demonstrate fast and excellent fingerprint matching performance, but if compromised, they can be reverse-engineered to retrieve minutia information. In this paper, we propose alignment-free cancelable MCC-based templates by exploiting the MCC feature extraction and representation. The core component of our design is a dynamic random key model, called Dyno-key model. The Dyno-key model dynamically extracts elements from MCC’s binary feature vectors based on randomly generated keys. Those extracted elements are discarded after the block-based logic operations so as to increase security. Leveling with the performance of the unprotected, reproduced MCC templates, the proposed method exhibits competitive performance in comparison with state-of-the-art cancelable fingerprint templates, as evaluated over seven public databases, FVC2002 DB1-DB3, FVC2004 DB1 and DB2, and FVC2006 DB2 and DB3. The proposed cancelable MCC-based templates satisfy all the requirements of biometric template protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.