Online learning is a framework for processing and learning from sequential data in real time, offering benefits such as promptness and low memory usage. However, it faces critical challenges, including concept drift, where data distributions evolve over time, and class imbalance, which significantly hinders the accurate classification of minority classes. Addressing these issues simultaneously remains a challenging research problem. This study introduces a novel algorithm that integrates adaptive weighted kernel density estimation (awKDE) and a conscious biasing mechanism to efficiently manage memory, while enhancing the classification performance. The proposed method dynamically detects the minority class and employs a biasing strategy to prioritize its representation during training. By generating synthetic minority samples using awKDE, the algorithm adaptively balances class distributions, ensuring robustness in evolving environments. Experimental evaluations across synthetic and real-world datasets demonstrated that the proposed method achieved up to a 13.3 times improvement in classification performance over established oversampling methods and up to a 1.66 times better performance over adaptive rebalancing approaches, while requiring significantly less memory. These results underscore the method’s scalability and practicality for real-time online learning applications.
Read full abstract