Mungbean yellow mosaic Indian virus (MYMIV) and bruchid infestation are severe production constraints of mungbean in South Asia, a major global mungbean production area. Marker-assisted selection for resistance against these disorders while maintaining or even improving agronomic traits is an important step toward breeding elite mungbean varieties. This study employed recombinant inbred lines (F12) derived from a cross between MYMIV-tolerant Vigna radiata NM92 and bruchid-resistant V. radiata ssp. sublobata TC1966 to identify chromosomal locations associated with disease and insect pest resistance and seed traits. A linkage map comprising 11 linkage groups was constructed with random amplified polymorphic DNA (RAPD), sequence characterized amplified regions (SCAR), cleaved amplified polymorphic DNA (CAP), amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Quantitative trait loci (QTLs) for MYMIV and bruchid resistance, 100 seed weight and seed germination rate were identified. Three major QTLs for MYMIV and one major bruchid resistance locus were mapped on LG 9. The resistance alleles were contributed by the MYMIV tolerant parent NM92 and the bruchid resistant parent TC1966 respectively. One of the MYMIV QTLs was tightly linked in repulsion phase to the bruchid resistance locus. In addition, three minor QTLs for MYMIV resistance were found, where the resistance alleles were contributed by TC1966. Lines combining MYMV resistance alleles from both parents have greater resistance to MYMIV than the tolerant parent. Two minor bruchid resistance QTLs were identified in TC1966. Furthermore, three QTLs each for 100 seed weight and germination rate were detected. The markers defining the QTLs identified in this study will be useful in marker-assisted breeding of improved mungbean varieties in the future.
Read full abstract