In this paper we investigate the localization of spinor fields in braneworld models by reducing a Dirac spinor in 2n + 2-dimensional spacetime to spinors in 2n dimensions. The high-dimensional Dirac can be reduced to low-dimensional spinors including Weyl or Dirac. In conformally flat extra-dimensional spacetime, fermions cannot be localized through minimal coupling with gravity. To achieve the localization of spinor fields, we introduce a tensor coupling term given by Ψ¯ΓMΓNΓP⋯TMNP⋯Ψ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{\\Psi}{\\Gamma}^M{\\Gamma}^N{\\Gamma}^P\\cdots {T}_{MNP\\cdots}\\Psi $$\\end{document}, which ensures SO(n, 1) symmetry. For a tensor TMNP⋯ of odd order, the left and right chiralities of high-dimensional spinors are decoupled. We find that a special form of tensor coupling Ψ¯ΓM∂MFϕRRμνRμν⋯Ψ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\overline{\\Psi}{\\Gamma}^M{\\partial}_MF\\left(\\phi, R,{R}^{\\mu \ u}{R}_{\\mu \ u},\\cdots \\right)\\Psi $$\\end{document} may facilitate the localization of the spinor field when F(ϕ) = ϕn.