A software process is a set of related activities that culminates in the production of a software package: specification, design, implementation, testing, evolution into new versions, and maintenance. There are also other supporting activities such as configuration and change management, quality assurance, project management, evaluation of user experience, etc. Software repositories are infrastructures to support all these activities. They can be composed with several systems that include code change management, bug tracking, code review, build system, release binaries, wikis, forums, etc. This position paper on mining software repositories presents a review and a discussion of research in this field over the past decade. We also identify applied machine learning strategies, current working topics, and future challenges for the improvement of company decision-making systems. Machine learning is defined as the process of discovering patterns in data. It can be applied to software repositories, since every change is recorded as data. Companies can then use these patterns as the basis for their decision-making systems and for knowledge discovery.