Antiviral treatment remains one of the key pharmacological interventions against influenza pandemic. However, widespread use of antiviral drugs brings with it the danger of drug resistance evolution. To assess the risk of the emergence and diffusion of resistance, in this paper, we develop a diffusive influenza model where influenza infection involves both drug-sensitive and drug-resistant strains. We first analyze its corresponding reaction model, whose reproduction numbers and equilibria are derived. The results show that the sensitive strains can be eliminated by treatment. Then, we establish the existence of the three kinds of traveling waves starting from the disease-free equilibrium, i.e., semi-traveling waves, strong traveling waves and persistent traveling waves, from which we can get some useful information (such as whether influenza will spread, asymptotic speed of propagation, the final state of the wavefront). On the other hand, we discuss three situations in which semi-traveling waves do not exist. When the control reproduction number R_{C} is larger than 1, the conditions for the existence and nonexistence of traveling waves are determined completely by the reproduction numbers R_{SC}, R_{RC} and the wave speed c. Meanwhile, we give an interval estimation of minimal wave speed for influenza transmission, which has important guiding significance for the control of influenza in reality. Our findings demonstrate that the control of influenza depends not only on the rates of resistance emergence and transmission during treatment, but also on the diffusion rates of influenza strains, which have been overlooked in previous modeling studies. This suggests that antiviral treatment should be implemented appropriately, and infected individuals (especially with the resistant strain) should be tested and controlled effectively. Finally, we outline some future directions that deserve further investigation.