Distributed control systems (DCS) are essential to operate complex industrial processes. A major part of a DCS is the alarm system, which helps plant operators to keep the processes stable and safe. Alarms are defined as threshold values on individual signals taking into account minimum reaction time of the human operator. In reality, however, alarms are often noisy and overwhelming, and thus can be easily overlooked by the operators. Early alarm prediction can give the operator more time to react and introduce corrective actions to avoid downtime and negative impact on human safety and the environment. In this context, we introduce Alarm Prediction Transformer (APT), a multimodal Transformer-based machine learning model for early alarm prediction based on the combination of recent events and signal data. Specifically, we propose two novel fusion strategies and three methods of label encoding with various levels of granularity. Given a window of several minutes of event logs and signal data, our model predicts whether an alarm is going to be triggered after a few minutes and, if yes, it also predicts its location. Our experiments on two novel real industrial plant data sets and a simulated data set show that the model is capable of predicting alarms with the given horizon and that our proposed fusion technique combining inputs from different modalities, i. e. events and signals, yields more accurate results than any of the modalities alone or conventional fusion techniques.
Read full abstract