A comparative study was performed to investigate the physicochemical properties and protective effects of hydrochloric acid-resistant dextrin (H-RD), citric acid-resistant dextrin (C-RD) and tartaric acid-resistant dextrin (T-RD) on the metabolic disorders and intestinal microbiota for type 2 diabetes mellitus (T2DM) mice. T-RD had the minimum molecular weight, with the highest short chain (DP 6–12) proportion and resistant starch content. After 4-week intervention with the three resistant dextrins, the body weight and fasting blood glucose of T2DM mice were improved significantly, accompanied by the reduction of serum indexes (TG, TC, LDL-C, ALT, AST, CRE, BUN, FINS, and GSP), but the serum HDL-C and liver glycogen levels increased. Among the three RDs intervention groups, T-RD showed the most significant improvement, followed by C-RD and finally H-RD. The 16 s rDNA results indicated that oral administration of resistant dextrins favored the proliferation of specific gut microbiota, including Faecalibaculum, Parabacteroides and Dubosiella, and reduced the ratio of Firmicutes/Bacteroidota, which is beneficial for reducing insulin resistance. Herein, the findings supported that the resistant dextrins exhibited a remission effect on T2DM, providing a basis for the development of functional food adjuvants for T2DM treatment.