Abstract

The effects of oxidation on the gastric digestion properties of soybean protein isolates (SPIs) in a model of lipoxygenase (LOX)-catalyzed linoleic acid (LA) oxidation system and the multiscale structural characterization of SPI hydrolysate were investigated. Results indicated that the feature of SPI hydrolysate is dependent upon the degree of oxidation. Pepsin hydrolysis caused a red shift in fluorescence intensity and a reduction in surface hydrophobicity and diminished the particle size of SPI hydrolysate during gastric digestion. Compared with the control, mild oxidation was beneficial to protein unfolding and gastric digestibility, as manifested by minimal molecular weight (MW) distribution >50 kDa (32.34%) and smaller peptide fragments under scanning electron microscopy. However, severe oxidation brought about 39.47% loss of free amino acids. It was interesting to find that glycinin was more vulnerable to pepsin hydrolysis after oxidation as compared to the native SPI. Overall, the moderately oxidized SPI appeared to be digested to a greater extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.