Listeria monocytogenes is a Gram-positive opportunistic human pathogen and it remains a significant cause of foodborne illnesses. A variety of natural and synthetic compounds have been studied to inhibit the growth of L. monocytogenes in foods. Antimicrobial combinations with synergistic antilisterial properties can reduce the dose of each antimicrobial, which can be further enhanced by chelating compounds. Therefore, the objective of this study was to determine antilisterial properties of binary or ternary combinations of lactobionic acid (LBA), nisin, and thymol in tryptic soy broth (TSB), 2% reduced-fat milk, and whole milk. The results showed that the minimum inhibitory concentration (MIC) of nisin, thymol and LBA was 125IU/mL, 0.25mg/mL, and 10mg/mL, respectively. The ternary combination was the most effective in reducing MICs of antimicrobials, with the MIC of nisin, thymol, and LBA being 31.25IU/mL, 0.0625mg/mL, and 1.25mg/mL, respectively. In TSB with 0.6% yeast extract, L. monocytogenes grew in individual or binary antimicrobial treatments of 31.25IU/mL nisin, 0.0625mg/mL thymol, and 1.25mg/mL LBA within 24h at 32°C, while it was completely inhibited by the ternary combination. In 2% reduced-fat milk at 21°C, the ternary combination of nisin, thymol, and LBA at respective concentrations of 250IU/mL, 2mg/mL, and 10mg/mL completely inhibited the bacterium to below the detection limit in 72h while >2log (CFU/mL) bacteria was still detected in all the binary combinations after 120h. In whole milk, the combination of 500IU/mL nisin, 2mg/mL thymol, and 10mg/mL LBA reduced bacteria to around 2log (CFU/mL) in 4h at 21°C, and no bacterial recovery was observed after 5 d. This study suggested the potential of the ternary combination of nisin, thymol and LBA for food preservation.
Read full abstract