Context:Fluoroquinolones are the most effective antibiotics against Pseudomonas aeruginosa; many strains, however, have shown resistance due to mutations in DNA gyrase, topoisomerase IV, or in the efflux pumps. Little is known about P. aeruginosa efflux pump resistance mechanisms in the Kingdom of Bahrain.Aim:The aim was to study efflux pump-mediated fluoroquinolone resistance among P. aeruginosa isolates using phenotypic (E-test and agar dilution) and genotypic (real-time-polymerase chain reaction [RT-PCR]) methods.Materials and Methods:Fifty ciprofloxacin-resistant P. aeruginosa isolates were included in this study. Genus and species of P. aeruginosa were confirmed by conventional PCR. The minimum inhibitory concentration (MIC) of ciprofloxacin with and without carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was determined by E-test and agar dilution test. The overexpression of genes MexB, MexD, MexF, and MexY was measured by RT-PCR.Results:All isolates were confirmed as P. aeruginosa. Among the fifty isolates, four showed reduction in ciprofloxacin MIC after addition of CCCP. These four isolates showed upregulation of expression of at least one of the four genes by RT-PCR. The mean gene expression of MexB, MexD, MexF, and MexY increased by 1.6, 4.65, 3.4, and 3.68-fold, respectively.Conclusion:The results demonstrate the presence and type of efflux pump overexpression, mandating for large multicentric studies.
Read full abstract