ABSTRACT The spatial relationships between forest stands scheduled for harvesting are crucial for forest planning, once they affect directly environmental impacts and logistic aspects related to this operation. In this context, the objective of this study was to perform the optimized forest planning of a Pinus taeda, Pinus elliottii and Eucalyptus dunnii forest, composed by 236 stands, including minimum area constraints. Two approaches were applied for clustering harvesting activities. The first approach considered the inclusion of a set of constraints so-called ring inequalities, proposed by Carvajal et al. (2013). The second approach was based on the formulation proposed by Rebain and McDill (2003) for the creation of old-growth forest areas. Both formulations were capable to generate harvesting blocks with minimum area requirements, causing a reduction up to 5.1% in the objective function for the most restrictive scenario. We conclude that the formulation based on Carvajal et al. (2013) is the best alternative when only minimum area constraints are considered, due to the inferior number of constraints and superior performance in terms of the NPV generated.
Read full abstract