First-order reversal curve (FORC) and remanence-based Preisach diagrams are alternative ways of determining the Preisach distribution of a sample, which incorporates information about the coercivity spectrum and the distribution of interactions and self-demagnetizing fields. We compare results of the two methods for well-characterized synthetic and natural samples containing single-domain (SD) and pseudo-SD (PSD) magnetite, maghemite, titanomagnetite and titanomaghemite. The greater time requirements of remanence as opposed to in-field measurements limited our Preisach diagrams to a few hundred points, compared to several thousand points for the corresponding FORC diagrams. Only minimal smoothing could be applied in order to limit the regions near the axes of the diagrams in which function values must be extrapolated. In spite of these restrictions, we find excellent agreement between the essential features of the distributions determined by the two methods. The main features, the location and spreading of the distribution peak, are very consistent. However, the low-coercivity part of the Preisach distribution is sometimes poorly resolved or not imaged at all for remanence-only measurements. Features in this region can be diagnostic of PSD and multidomain (MD) grains. The essential agreement between our FORC and Preisach diagrams in the region where they overlap justifies using the much faster FORC routine instead of traditional remanence-based Preisach methods to determine the Preisach distribution of palaeomagnetic samples without strong interactions. We propose a symmetric FORC protocol that would permit separation of the irreversible and reversible parts of the Preisach distribution. The irreversible part is what is determined by remanence-only methods and what is desired for characterization of the remanence behaviour of palaeomagnetic samples. The reversible part is most significant in detecting MD behaviour and screening out samples containing large PSD and MD grains.
Read full abstract