Lanthanide-doped upconversion nanoparticles (UCNPs) exhibit unique optical characteristics, including a large anti-Stokes shift, a long luminescence lifetime, sharp emission bands, and high photostability. These virtues make UCNPs highly useful in many emerging applications such as biolabeling, security, multicolor displays, and optogenetics. Despite the enticing prospects of UCNPs, their practical utility is greatly hindered by the low efficiency of the conversion from near-infrared (NIR) excitation to visible emission. In a typical nanosystem codoped with sensitizers and activators, upconversion processes occur through NIR light sensitization, energy transfer from sensitizers to activators, sequential energy population at the excited states of the activators, and eventually the release of higher-energy photons. In fact, in the upconversion nanosystem, each step in the energy flux, including NIR energy injection, energy transfer and migration, and energy dissipation, has a decisive effect on the resulting luminescence intensity. Important in-depth studies have been conducted in pursuit of brighter UCNPs. Specifically, lanthanide ions possessing larger absorption cross sections (Nd3+) or organic dye molecules have been chosen as NIR light sensitizers to improve the light harvesting ability of upconversion nanostructures. The doping concentration and spatial distribution of lanthanide ions are strictly managed to mitigate detrimental energy cross-talk processes. The surfaces of UCNPs are passivated with epitaxially grown layers to block surface quenching. Therefore, rational design of energy flux manipulation, through control of excitation energy collection, transmission, and release in a three-dimensional nanospace of UCNPs, is crucial in constructing nanosystems with high upconversion efficiencies. In this Account, from an energy flux manipulation perspective, we attempt to provide an overview of general and emerging strategies for the design of efficient lanthanide-mediated photon upconversion nanosystems. With the significant progress made over the past several years, we are now able to design a series of upconversion nanoplatforms with efficient NIR light harvesting ability, sufficient energy transmission channels, and low levels of luminescence quenching at the particle's surface. In addition to providing a deep understanding of the underlying mechanism of energy flux, these discoveries will guide the development of upconversion nanosystems with significantly improved performance. The key aspects of this Account of energy flux manipulation in upconversion nanosystems mainly include the management of NIR photon energy injection, the optimization of efficient energy transfer pathways, and the minimization of energy flux leakage. Future challenges and opportunities for the development of efficient upconversion nanosystems are also discussed.