Recently, a class of second-order neurodynamic approaches with convergence rates of O(1t) or O(1t2) has been developed to address the sparse signal reconstruction problem. In this paper, we propose a second-order projection neurodynamic approach (SOPNA) with exponential convergence to reconstruct a sparse signal by solving a modified inverted Gaussian function (MIGF) minimization problem. The existence, uniqueness, and feasibility of the solution to SOPNA are detailedly investigated, and the exponential convergence rate of O(exp(−μt)),μ>0 is proved. This implies that our proposed SOPNA can achieve a significantly superior convergence performance than several existing second-order neurodynamic approaches. Numerical experiments also confirm its effectiveness and superiority. Finally, the applications of the proposed SOPNA in real signal and real image reconstructions validate its practical feasibility.
Read full abstract