Let 1 ∈ A ⊂ B be an inclusion of C*-algebras of C*-index-finite type with depth 2. We try to compute the topological stable rank of B (= tsr (B)) when A has topological stable rank one. We show that tsr (B) ≤ 2 when A is a tsr boundedly divisible algebra, in particular, A is a C*-minimal tensor product UHF ⊗ D with tsr (D) = 1. When G is a finite group and α is an action of G on UHF, we know that a crossed product algebra UHF ⋊α G has topological stable rank less than or equal to two. These results are affirmative data to a generalization of a question by Blackadar in 1988.