To improve the accuracy and robustness of hand–eye calibration, a hand–eye calibration method based on Schur matric decomposition is proposed in this paper. The accuracy of these methods strongly depends on the quality of observation data. Therefore, preprocessing observation data is essential. As with traditional two-step hand–eye calibration methods, we first solve the rotation parameters and then the translation vector can be immediately determined. A general solution was obtained from one observation through Schur matric decomposition and then the degrees of freedom were decreased from three to two. Observation data preprocessing is one of the basic unresolved problems with hand–eye calibration methods. A discriminant equation to delete outliers was deduced based on Schur matric decomposition. Finally, the basic problem of observation data preprocessing was solved using outlier detection, which significantly improved robustness. The proposed method was validated by both simulations and experiments. The results show that the prediction error of rotation and translation was 0.06 arcmin and 1.01 mm respectively, and the proposed method performed much better in outlier detection. A minimal configuration for the unique solution was proven from a new perspective.