Chromite ore processing residue (COPR) is a hazardous waste retaining relic Cr(VI). Large amounts are generated during the high-lime production of leather tanning salts in the region of Kanpur, India. Here, COPR is often deposited on open and uncontrolled landfills, leading to severe groundwater contamination. This study aimed at elucidating how ageing under these ambient conditions alters COPR properties and Cr(VI) mobility. For this, aged COPR obtained from surface and subsurface horizons of a visibly weathered open dumpsite was systematically compared to fresh high-lime COPR collected at two tanning salt factories. Elemental composition of the samples was characterized using X-ray fluorescence analysis while Cr(VI) mobility was assessed photometrically in alkaline and aqueous batch extracts. Mineralogical composition of the COPR was studied using X-ray powder diffractometry, scanning electron microscopy and thermogravimetry–mass spectrometry. The fresh COPR were highly alkaline and contained characteristic Cr(VI) host phases like calcium aluminum chromate hydroxide (CAC) and katoite. These were absent in the aged samples due to their lower pH of ~ 9. The pH drop was likely caused by uptake of atmospheric CO2, which was corroborated by elevated carbon and calcite levels. This carbonation coincided with vertical translocation of Cr(VI) to the subsurface of the landfill, where leachate concentrations in excess of 1.6 g · L−1 and chromatite (CaCrO4) precipitations were found. The results highlight the importance of carbonation as a key ageing process which will likely exacerbate Cr(VI) groundwater contamination at open COPR dumpsites.Graphical
Read full abstract