Herein, we report the wet-chemical synthesis of a ferromagnetic nickel-doped ZnO (Zn1-xNixO) nanocatalyst as a novel and visible-light-driven photocatalyst. Through X-ray diffraction, UV/Vis absorption, electronic studies, and current-voltage experiments, the effect of the ferromagnetic nickel dopant on the structural, optical, morphological, and electrical properties of the synthesized Zn1-xNixO nanocatalyst was studied. The Ni-doping introduced the structural variation in the Zn1-xNixO nanocatalyst, exhibiting a visible light-triggered optical band gap of 2.96 eV and an excellent current conductivity of 6.3 × 10−4 Sm−1. Moreover, the synthesis of the Zn1-xNixO catalyst at the nanoscale enhanced its surface energy, showing a robust affinity to stick with the dye and pathogenic microbes. The synergistic effects of all the mentioned features enable our Zn1-xNixO nanocatalyst to efficiently generate and transport reactive oxygen species (ROS) under visible light illumination. Regarding antibacterial action, the as-synthesized Zn1-xNixO nanocatalyst showed 1.7% higher activity against E. coli than that of the drug Ciprofloxacin. In addition, doped nanocatalysts mineralize almost 97% of the Allura red dye in just 80 min with a constant rate value of 0.036 min−1. The impedance study and post-application XRD proposed that our Zn1-xNixO nanocatalyst has good conductivity and structural stability. Applications studies show the unusual photocatalytic activity of as-synthesized Zn1-xNixO nanocatalysts, which makes it a suitable candidate for industrial discharge treatment applications at the expense of solar light.