Pharmaceuticals, as anthropogenic pollutants in a wide range of water sources, generally require specific treatment methods for degradation. A trimetallic layered double hydroxide (CuCoFe-LDH) was successfully fabricated by coprecipitation and applied as a novel heterogeneous electro-Fenton (EF) catalyst for the degradation of acetaminophen (ACT) from aqueous environments. The EF experiments showed that the CuCoFe-LDH/EF process achieved 100% of ACT degradation efficiency within 60 min at pH = 5, catalyst dosage of 0.50 g/L, current density of 10 mA/cm2 and initial ACT concentration of 20 mg/L. An impressive (>80%) mineralization of ACT was obtained over a wide pH range (pH 3–9) after 180 min. Meanwhile, the role of ·OH and O2.- were certified by radical quenching experiments and electron paramagnetic resonance (EPR) analysis. Through mechanism exploration, the coexistence of Cu and Co on Fe-based LDHs can accelerate the interfacial electron transfer and promote the formation of the reactive oxygen species (ROS), thus facilitating the EF process. Furthermore, the degradation by-products and possible degradation pathways of ACT in the CuCoFe-LDH/EF process were proposed. The reusability test and the treatment of various typical organic pollutants experiments indicated that the CuCoFe-LDH/EF process has excellent stability and broad application prospects. This work provides a valuable reference for the treatment of pharmaceuticals by the heterogeneous EF process in a wide range of pH.
Read full abstract