This study demonstrated that there was extensive iron staining on trabecular surface and marked reduction in trabecular bone volume without significant alteration in bone formation and bone resorption rates as well as significant reduction in bone mineral density in 18 thalassemic patients. Serum IGF-I was reduced and may modulate the reduction of bone mass. Bone histomorphometric studies in thalassemia to show alterations in bone histology and their relationship to biochemical parameters are very limited. Therefore, this study was systematically conducted to determine the alterations in thalassemia patients. Serum biochemical parameters, trans-iliac crest bone biopsy, and determination of bone mineral density of femur and lumbar spine were done in 18 thalassemic patients (10 females and 8 males). Serum osteocalcin, carboxy terminal teleopeptide fragment of type I collagen, and parathyroid hormone levels were within normal limits, but serum 25(OH) vitamin D (19.3 +/- 1.6 ng/ml) and 1,25(OH)2 vitamin D (33.77 +/- 1.51 pg/ml) levels were decreased. Serum insulin-like growth factor I (IGF-I; 145.2 +/- 20 ng/ml) was suppressed, whereas serum ferritin (1366.6 +/- 253.9 ng/ml) was markedly elevated. Reduced bone mineral density was found in all studied areas. Trabecular bone volume was significantly decreased (16.65 +/- 1.12%), whereas bone formation rate, eroded surface, and other bone histomorphometric parameters were within normal limits. The trabecular bone volume varied significantly with bone mineral density of total femur (r = 0.48, p = 0.04). There was an extensive stainable iron surface on the mineral front (9-60%). Significant correlation between serum IGF-I, serum ferritin, stainable iron surface, and bone mineral density, lumbar spine, and total femur were found. Serum IGF-I correlated with trabecular bone volume (r = 0.6, p = 0.03), inversely with both serum ferritin level (r = -0.6, p < 0.01), and inversely with stainable iron surface (r = -0.53, p = 0.02). Multiple regression analysis demonstrated that IGF-I was the only independent variable that determined bone mineral density of lumbar spine and total femur. Low bone mineral density and reduced trabecular bone volume with extensive iron deposition are the predominant findings in thalassemic patients. There was no evidence of increased bone resorption or mineralization defect. A reduction in circulatory IGF-I may modulate the reduction of bone mass.