ETICS is a popular external wall insulation system, which is not without possible defects and damages. A frequent cause, direct or indirect, of damage to buildings is the impact of water (moisture). This article presents, among others, the results of tests of the moisture content of ETICS layers, the water absorption and capillary absorption of the render by means of the Karsten tube method, numerical thermo-moisture simulations, and tests of interlayer adhesion, in sample residential buildings. Mass moisture content testing of the wall substrate showed acceptable moisture levels (1–4%m) within masonry walls made of silicate blocks, as well as locally elevated moisture levels (4–8%m) in the case of reinforced concrete walls. Moisture testing of the insulation samples showed a predominantly dry condition, and testing of the reinforcement layer showed an acceptable level of moisture. Severe moisture was found in the sample taken in the ground-floor zone at the interface between mineral wool and EPS-P insulation underneath the reinforced layer. Capillary water absorption tests helped classify silicone render as an impermeable and surface hydrophobic coating. Tests of the water absorption of the facade plaster showed that the value declared by the manufacturer (<0.5 kg/m2) was mostly met (not in the ground-floor zone). The simulation calculations gave information that there was no continuous increase in condensation during the assumed analysis time (the influence of interstitial condensation on the observed anomalies was excluded). The tests carried out indicated the occurrence of numerous errors in the implementation of insulation works affecting the moisture content and durability of external partitions.
Read full abstract