A detailed study on a small scale of the effect of phosphatization on the chemistry of marine cobalt-rich ferromanganese crusts supplies useful information for the evaluation and comprehensive utilization of crust mineral resources. Sub-samples from top to bottom of a 10-cm thick sample from the NW Pacific Magellan seamount were taken at 5 mm intervals. The concentration profiles of ore-forming and rare earth elements show that obvious differences exist between young unphosphatized crusts and old phosphatized crusts. In the old crusts Fe, Mn, Si, Al, Zn, Mg, Co, Ni and Cu elements are depleted and Ca, P, Sr, Ba and Pb elements are enriched. The order of depletion is Co > Ni > Mg > Al > Mn > Si > Cu > Zn > Fe, while the order of enrichment is P > Ca > Ba > Pb > Sr. The phosphate mineral controls the concentration variation of the ore-forming elements in crusts and causes loss of the main ore-forming elements such as Co and Ni. The phosphatization also affects the abundance of REEs in the crusts. REEs are more abundant and the content of Ce in old crusts is higher than that in young crusts, however, the pattern of REEs and their fractionation characteristics in new and old crusts are not fundamentally changed. A Y-positive anomaly in old crusts has no relationship to the phosphatization.
Read full abstract