Gas-bearing, organic-rich shales commonly host numerous opening-mode fractures; however, their formation mechanism remains controversial, with competing arguments of tectonic-origin and/or hydrocarbon generation pressurization-origin. Here, we studied fracture fillings in shale reservoirs of the lower Silurian Longmaxi Formation in the Luzhou area, southern Sichuan Basin, SW China. Using in-situ UPb geochronology, rare earth elements (REEs) and C-O-Sr isotope geochemistry, and fluid inclusion analyses, we investigated the timing and geochemical attributions of fracture fills and identify the mechanism of fracture formation. The results show that, the cements that occupy fractures in the Longmaxi Formation shales contain mainly calcite and quartz. The calcite cements show crack-seal and fibrous textures, indicating that they are syn-kinematic mineral deposits. The 87Sr/86Sr values of the calcite cements essentially overlap with those of their proximal host shales. This result, combined with slight depletions in δ13CPDB and relatively uniform fluid δ18OSMOW isotopic features, indicate that the fluids from which the calcite precipitated were largely derived from their surrounding host shales. Abundant methane inclusions are present in fracture cements, with trapping pressures of 104.5–157.5 MPa and pressure coefficients of 1.92–2.43, suggesting they were trapped in an overpressurized fluid system. In-situ UPb dating of calcite cements yielded ages of ca. 160 Ma and ca. 110 Ma, which coincide with the timing of thermal cracking of oil to gas during burial. In combination with the overpressurized, geochemically closed fluid system, the fractures were most likely triggered by gas generation. Our study emphasizes that natural fracturing induced by hydrocarbon generation overpressurization is an essential mode of brittle failure in tectonically quiescent basins worldwide.
Read full abstract