Underground coal mining induces surface subsidence, leading to disasters such as damage to buildings and infrastructure, landslides, and surface water accumulation. Preventing and controlling disasters in subsidence areas and reutilizing land depend on understanding subsidence regularity and obtaining surface subsidence monitoring data. These data are crucial for the reutilization of regional land resources and disaster prevention and control. Subsidence hazards are also a key constraint to mine development. Recently, with the rapid advancement of UAV technology, the use of UAV photogrammetry for surface subsidence monitoring has become a significant trend in this field. The periodic imagery data quickly acquired by UAV are used to construct DEM through point cloud filtering. Then, surface subsidence information is obtained by differencing DEM from different periods. However, due to the accuracy limitations inherent in UAV photogrammetry, the subsidence data obtained through this method are characterized by errors, making it challenging to achieve high-precision ground surface subsidence monitoring. Therefore, this paper proposes a spatial domain filtering algorithm for UAV photogrammetry combined with surface deformation caused by coal mining based on the surface subsidence induced by coal mining and combined with the characteristics of the surface change. This algorithm significantly reduces random error in the differential DEM, achieving high-precision ground subsidence monitoring using UAV. Simulation and field test results show that the surface subsidence elevation errors obtained in the simulation tests are reduced by more than 50% compared to conventional methods. In field tests, this method reduced surface subsidence elevation errors by 39%. The monitoring error for surface subsidence was as low as 8 mm compared to leveling survey data. This method offers a new technical pathway for high-precision surface subsidence monitoring in mining areas using UAV photogrammetry.
Read full abstract