Following middle cerebral artery (MCA) stroke, enhanced contralesional evoked responses have been consistently reported both in man and rodents as part of plastic processes thought to influence motor recovery. How early this marker of large-scale network reorganization develops has however been little addressed, yet has clinical relevance for rehabilitation strategies targeting plasticity. Previous work in mice has reported enhanced contralesional responses to unaffected-side forepaw stimulation as early as 45 min after MCA small branch occlusion. Using functional ultrasound imaging (fUSi) in anesthetized rats subjected to distal temporary MCA occlusion (MCAo), we assessed here (i) whether enhanced contralesional responses also occurred with unaffected-side whisker pad stimulation, and if so, how early after MCAo; and (ii) the time course of this abnormal response during occlusion and after reperfusion. We replicate in a more proximal MCA occlusion model the earlier findings of ultra-early enhanced contralesional evoked responses. In addition, we document this phenomenon within minutes after MCAo, and its persistence throughout the entire 90-min occlusion as well as 90-min reperfusion periods studied. These findings suggest that plastic processes may start within minutes following MCAo in rodents. If replicated in man, they might have implications regarding how early plasticity-enhancing therapies can be initiated after stroke.
Read full abstract