In this paper we extend the classical min–max model predictive control framework to a class of uncertain discrete event systems that can be modelled using the operations maximization, minimization, addition and scalar multiplication, and that we call max–min-plus-scaling (MMPS) systems. Provided that the stage cost is an MMPS expression and considering only linear input constraints then the open-loop min–max model predictive control problem for MMPS systems can be transformed into a sequence of linear programming problems. Hence, the min–max model predictive control problem for MMPS systems can be solved efficiently, despite the fact that the system is non-linear. A min–max feedback model predictive control approach using disturbance feedback policies is also presented, which leads to improved performance compared to the open-loop approach.