Wind power is a crucial direction for new energy transition technology in response to the challenges of global warming. However, the potential for collisions between the blades and the tower barrel remains a significant concern. To address this issue, a large number of sensors, such as lasers and cameras, are attached to the structure, but they struggle to operate in complex weather and at night. This paper presents a method of employing a 79 GHz FMCW (frequency-modulated continuous wave) mmWave (millimeter-wave) radar with circularly polarization on the top of the tower. During the design, two main considerations are raised: (1) Since the small-RCS (radar cross-section) blade experiences an oblique incidence from more than 70 m away, the channel SNR (signal-to-noise ratio) is low, so high-gain antennas and SIMO (single-input multiple-output) radar configurations are designed to increase the Pt (transmitting power). (2) Wind turbines are often located in offshore or mountainous areas with a high level of weather interference, so a pair of circularly polarized antenna is used to reduce the interference of meteorological particles to the radar. Finally, test results from a practical wind turbine in different weather conditions prove its practicality. During tests, the wind turbine operates at a rotor speed of 6 to 12 rounds per minute, and the clearance range has an obvious inverse relationship with it, ranging from 6 to 12 m. This technology enhances safety, maximizes efficiency, and enables optimal length and weight determination during design for improved power generation.