Our objective was to evaluate effects of corn grain endosperm type and fineness of grind on feed intake, feeding behavior, ruminal fermentation, and productive performance of lactating cows. Eight ruminally and duodenally cannulated Holstein cows in mid lactation (130 ± 42 d in milk; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design with 21-d periods. A 2 × 2 factorial arrangement of treatments was used with main effects of corn grain endosperm type (floury or vitreous) and fineness of grind of corn grain (fine or medium). Rations were formulated to contain 29% starch, 27% neutral detergent fiber, 18.2% forage neutral detergent fiber, and 18% crude protein. Corn grain treatments supplied 86.2% of dietary starch. Endosperm was 25% vitreous for floury corn and 66% vitreous for vitreous corn. Fineness of grind did not affect dry matter intake (DMI), but floury corn tended to reduce DMI (23.8 vs. 25.1 kg/d) compared with vitreous corn. Floury corn increased meal frequency more for fine grind size (9.57 vs. 9.41 meals/d) than medium grind size (9.78 vs. 9.75 meals/d). However, there were no effects of treatment on any other measure of feeding behavior. Endosperm type did not affect yields of milk or milk components or milk composition except that vitreous corn tended to decrease milk lactose concentration compared with floury corn. Finely ground corn decreased yields of milk (31.1 vs. 33.1 kg/d), 3.5% fat-corrected milk (33.1 vs. 35.1 kg/d), milk fat (1.22 vs. 1.32 kg/d), milk lactose (1.48 vs. 1.59 kg/d), and solids not fat (2.46 vs. 2.63 kg/d) compared with medium grind size. However, fineness of grind did not affect milk composition. Treatments had no effect on change in body weight or body condition score or efficiency of milk production (kg of 3.5% fat-corrected milk/kg of DMI). Mean ruminal pH was not affected by treatment, but pH variance was decreased by vitreous compared with floury corn. Total volatile fatty acids and propionate concentrations in the rumen were increased by floury compared with vitreous corn but were not affected by fineness of grind. Effects of fineness of grind on yield of milk and milk components were greater than the effects of corn grain vitreousness.
Read full abstract