Some cellulolytic bacteria require 1 or more branched-chain volatile fatty acids (BCVFA) for the synthesis of branched-chain AA and branched-chain long-chain fatty acids because they are not able to uptake branched-chain AA or lack 1 or more enzymes to synthesize branched-chain AA de novo. Supplemental BCVFA and valerate were included previously as a feed additive that was later removed from the market; these older studies and more current studies have noted improvements in neutral detergent fiber digestibility and milk efficiency. However, most studies provided a single BCVFA or else isobutyrate (IB), 2-methylbutyrate (MB), isovalerate, and valerate altogether without exploring optimal combinations. Our objective was to determine a combination of isoacids that is optimal for milk production. Sixty (28 primiparous and 32 multiparous) lactating Jersey cows (106 ± 54 days in milk) were blocked and assigned randomly to either a control (CON) treatment without any isoacids, MB [12.3 mmol/kg dry matter (DM)], MB + IB (7.7 and 12.6 mmol/kg DM of MB and IB, respectively), or all 4 isoacids (6.2, 7.3, 4.2, and 5.1 mmol/kg DM of MB, IB, isovalerate, and valerate, respectively). Cattle were fed the CON treatment for a 2-wk period, then were assigned randomly within a block to treatments for 8 wk (n = 15). There was a trend for an interaction of supplement and parity for milk components. There were no differences in components for primiparous cows, whereas MB + IB tended to increase protein concentration by 0.04 and 0.08 percentage units in multiparous cows compared with the CON and MB treatments, respectively. Feeding MB + IB increased fat concentration by 0.23 to 0.31 percentage units compared with all other treatments in multiparous cows. Milk yield and dry matter intake (DMI) did not change with treatment. Treatment interacted with week for milk net energy for lactation/DMI; MB + IB tended to increase milk net energy of lactation/DMI by 0.10 Mcal/kg compared with MB and approached a trend for CON, mainly during the early weeks of the treatment period, whereas differences decreased during the last 2 wk of the treatment period. Cows fed MB had the highest 15:0 anteiso fatty acids in the total milk fatty acid profile, which was greater than that for CON or MB + IB cows, but not cows supplemented with isoacids. Cows fed MB alone had the numerically lowest milk net energy for lactation/DMI. The combination of MB + IB appeared optimal for increasing feed efficiency in our study and was not at the expense of average daily gain. Further research is needed for evaluating how potential changes in supplemental isoacid dosage should vary under differing dietary conditions.
Read full abstract