The considerable increase in the production capacity of individual cows owing to both selective breeding and innovations in the dairy sector has posed challenges to management practices in terms of maintaining the nutritional and metabolic health status of dairy cows. In this observational study, we investigated the associations between milk yield, composition, and technological traits and a set of 21 blood biomarkers related to energy metabolism, liver function or hepatic damage, oxidative stress, and inflammation or innate immunity in a population of 1,369 high-yielding Holstein-Friesian dairy cows. The milk traits investigated in this study included 4 production traits (milk yield, fat yield, protein yield, daily milk energy output), 5 traits related to milk composition (fat, protein, casein, and lactose percentages and urea), 11 milk technological traits (5 milk coagulation properties and 6 curd-firming traits). All milk traits (i.e., production, composition, and technological traits) were analyzed according to a linear mixed model that included the days in milk, the parity order, and the blood metabolites (tested one at a time) as fixed effects and the herd and date of sampling as random effects. Our findings revealed that milk yield and daily milk energy output were positively and linearly associated with total cholesterol, nonesterified fatty acids, urea, aspartate aminotransferase, γ-glutamyl transferase, total bilirubin, albumin, and ferric-reducing antioxidant power, whereas they were negatively associated with glucose, creatinine, alkaline phosphatase, total reactive oxygen metabolites, and proinflammatory proteins (ceruloplasmin, haptoglobin, and myeloperoxidase). Regarding composition traits, the protein percentage was negatively associated with nonesterified fatty acids and β-hydroxybutyrate (BHB), while the fat percentage was positively associated with BHB, and negatively associated with paraoxonase. Moreover, we found that the lactose percentage increased with increasing cholesterol and albumin and decreased with increasing ceruloplasmin, haptoglobin, and myeloperoxidase. Milk urea increased with an increase in cholesterol, blood urea, nonesterified fatty acids, and BHB, and decreased with an increase in proinflammatory proteins. Finally, no association was found between the blood metabolites and milk coagulation properties and curd-firming traits. In conclusion, this study showed that variations in blood metabolites had strong associations with milk productivity traits, the lactose percentage, and milk urea, but no relationships with technological traits of milk. Specifically, increasing levels of proinflammatory and oxidative stress metabolites, such as ceruloplasmin, haptoglobin, myeloperoxidase, and total reactive oxygen metabolites, were shown to be associated with reductions in milk yield, daily milk energy output, lactose percentage, and milk urea. These results highlight the close connection between the metabolic and innate immunity status and production performance. This connection is not limited to specific clinical diseases or to the transition phase but manifests throughout the entire lactation. These outcomes emphasize the importance of identifying cows with subacute inflammatory and oxidative stress as a means of reducing metabolic impairments and avoiding milk fluctuations.
Read full abstract