There has been a growing interest in utilizing 3D printing technology for military and civil defense engineering, especially in enhancing the resilience of infrastructure against impacts. Due to its distinctive additive manufacturing process, 3D printed concrete (3DPC) shows anisotropic behavior when subjected to static loads. However, research on its performance under dynamic conditions remains limited. Therefore, this study explores the characteristics of 3DPC under static and dynamic loads. Quasi-static results showed that incorporating textile significantly enhanced the deformation capacity of specimens, with the ultimate deflection and flexural toughness of basalt textile reinforced specimens in the X direction reaching 1.07 mm and 4206.9 N·mm, which are 118 % and 117 % higher than control specimens without textiles, respectively. The mechanical properties of 3DPC specimens showed increasing trend from static to impact loads. The impact results indicated that the peak load increased with the increase in impact energy. Adding two types of textiles showed different anisotropic mechanical properties which are associated with the patterns of cracking and failure. The addition of basalt textiles primarily enhanced the energy dissipation properties of 3DPC, with increases up to 98.2 %. The AR-glass textile was superior in terms of maintaining peak force under multiple impacts.