A variety of mission equipment is mounted and utilized on UUVs (unmanned underwater vehicles) for the development of marine resources and underwater searching for military purposes. For exploration of a wide area, it is advantageous to use a towed underwater platform, and for precision exploration to a specific location, to use an active mobile ROV (remotely operated vehicles). Since the TUV (towed underwater vehicle) moves according to the speed of the towing vessel, it cannot be operated if the vessel is stationary or the speed is low. Therefore, TUVs do not have equipment that is useful at low speeds, such as optical cameras or forward looking sonars. If a TUV capable of active movement such as stationary or low-speed operation is developed, it can search a wide area and then accurately search for a specific location, with one platform mounting various mission equipment. In this paper, we propose a method for estimating the control model for a prototype of this novel TUV, and propose a depth and posture control algorithm to which the model is applied. The proposed TUV and control algorithm were verified by experiments under the flow rate environment in the circulating water channel.