Tannery sludge, a challenging waste, was utilized as a substrate for the production of Short-Chain Fatty Acids (SCFAs) through a series of six thermophilic Continuous Stirred-Tank Reactor runs. The sludge was subjected to a mild thermal pre-treatment and incorporated zeolites (chabazite in run II, and clinoptilolite in run III) in the acidification process. Results highlighted zeolites' impact on chromium concentration and the SCFAs/CODSOL ratio. Ammonia release remained consistent at around 47 % and 51 % for run I and II, respectively, but surpassed 60% in run III, suggesting limited zeolite effectiveness in NH4 absorption. Chromium release in the liquid fraction, due to thermal pretreatment, reached 335 mg/L. While in tests without zeolite, complete removal proved challenging, in zeolite-amended runs, complete removal was achieved, showcasing the materials' heavy metal absorption capacity. SCFA concentrations reached 20260 mgCOD/L, with acidification efficiency varying; runs I and III had ratios around 0.70 COD/COD, while run II showed substantial improvement (0.92) with chabazite. Anaerobic fermentation-digestion mass balance indicated a 41% reduction in landfill sludge mass, reducing its environmental footprint while yielding valuable byproducts like biogas and SCFAs. These findings underscore zeolites' potential in heavy metal absorption and acidification process enhancement, paving the way for applications with tannery sludge.
Read full abstract