We investigated local genetic associations among female Pacific common eiders (Somateria mollissima v-nigrum) nesting in a stochastic Arctic environment within two groups of barrier islands (Simpson Lagoon and Mikkelsen Bay) in the Beaufort Sea, Alaska. Nonrandom genetic associations were observed among nesting females using regional spatial autocorrelation analyses for distance classes up to 1000 m in Simpson Lagoon. Nearest-neighbour analyses identified clusters of genetically related females with positive lr values observed for 0-13% and 0-7% of the comparisons in Simpson Lagoon and Mikkelsen Bay, respectively, across years. These results indicate that a proportion of females are nesting in close proximity to more genetically related individuals, albeit at low frequency. Such kin groupings may form through active association between relatives or through natal philopatry and breeding site fidelity. Eiders nest in close association with driftwood, which is redistributed annually by seasonal storms. Yet, genetic associations were still observed. Microgeographic structure may thus be more attributable to kin association than natal philopatry and site fidelity. However, habitat availability may also influence the level of structure observed. Regional structure was present only within Simpson Lagoon and this island group includes at least three islands with sufficient driftwood for colonies, whereas only one island at Mikkelsen Bay has these features. A long-term demographic study is needed to understand more fully the mechanisms that lead to fine-scale genetic structure observed in common eiders breeding in the Beaufort Sea.