Leucocyte- and platelet-rich fibrin has been developed to stimulate wound healing response. However, it is currently unknown whether smoking affects the biological responses elicited by leucocyte- and platelet-rich fibrin on periodontal ligament-derived mesenchymal stromal cells. This study analyzes the kinetics of biomolecule release from leucocyte- and platelet-rich fibrin derived from smokers and nonsmokers and their effect on periodontal ligament cell proliferation and migration as essential biological activities during wound healing. Biomolecules present in leucocyte- and platelet-rich fibrin exudates and conditioned media collected from smokers and nonsmokers were analyzed by Luminex arrays. Periodontal ligament-derived mesenchymal stromal cell obtained from one nonsmoker were treated with leucocyte- and platelet-rich fibrin exudates or leucocyte- and platelet-rich fibrin conditioned media derived from both smokers and nonsmokers. The parameters evaluated included cell proliferation, determined by Ki67 immunostaining and migration assessed using transwell assays. Also, cells were treated with nicotine in the presence of fetal bovine serum 10% or leucocyte- and platelet-rich fibrin conditioned media. A similar biomolecular profile was detected in leucocyte- and platelet-rich fibrin exudates and leucocyte- and platelet-rich fibrin conditioned media from smokers and nonsmokers, stimulating (periodontal ligament-derived mesenchymal stromal cell) proliferation, and migration to a comparable degree. Nicotine reduced cell proliferation and migration of periodontal cells; however, this effect was recovered in the presence of leucocyte- and platelet-rich fibrin conditioned media. Leucocyte- and platelet-rich fibrin derived from smokers could be an autologous source of biomolecules to stimulate cell biological activities involved in wound healing in smokers who have difficulties in ceasing this habit. Clinical trials are required to evaluate the impact of leucocyte- and platelet-rich fibrin on healing responses in smokers.
Read full abstract