Boreal and northern temperate forest trees possess finely tuned mechanisms of dormancy, which match bud phenology with local seasonality. After winter dormancy, the accumulation of chilling degree days (CDD) required for rest completion before the accumulation of growing degree days (GDD) during quiescence is an important step in the transition to spring bud flush. While bud flush timing is known to be genetically variable within species, few studies have investigated variation among genotypes from different climates in response to variable chilling duration. We performed a controlled environment study using dormant cuttings from 10 genotypes of Populus balsamifera, representing a broad latitudinal gradient (43-58°N). We exposed cuttings to varying amounts of chilling (0-10 weeks) and monitored subsequent GDD to bud flush at a constant forcing temperature. Chilling duration strongly accelerated bud flush timing, with increasing CDD resulting in fewer GDD to flush. Genotypic variation for bud flush was significant and stratified by latitude, with southern genotypes requiring more GDD to flush than northern genotypes. The latitudinal cline was pronounced under minimal chilling, whereas genotypic variation in GDD to bud flush converged as CDD increased. We demonstrate that increased chilling lessens GDD to bud flush in a genotype-specific manner. Our results emphasize that latitudinal clines in bud flush reflect a critical genotype-by-environment interaction, whereby differences in bud flush between southern vs. northern genotypes depend on chilling. Our results suggest selection has shaped chilling requirements and depth of rest as an adaptive strategy to avoid precocious flush in climates with midwinter warming.
Read full abstract