We propose a novel, to the best of our knowledge, scheme for mid-infrared upconversion imaging with high tunability between bright-field and edge-enhanced modalities. The involved engineering of the nonlinear process favors shaping the optical transfer function of the imaging system. Consequently, a nonlinear angle-selective filter can be configured to perform an all-optical Fourier processing of the image, which highly depends on phase-matching parameters. We numerically demonstrate the ability to switch modalities between the bright-field and edge-enhanced imaging by tuning the crystal temperature and simultaneously acquiring both information by dichromatic illumination. Notably, the achieved reconfigurability is realized without changing the imaging settings, which contrasts with previous instantiations based on pump adaptation. Therefore, the proposed architecture of upconversion imagers would pave a novel way to implement layout-compact and all-optical processing for infrared images.