Relebactam is a β-lactamase inhibitor of class A and class C β-lactamases, including carbapenemases. We evaluated the ability of relebactam to restore imipenem susceptibility against a collection of Klebsiella pneumoniae isolates from Greek hospitals. We tested 314 non-MBL carbapenemase-producing K. pneumoniae consecutive clinical strains isolated from unique patients at 18 hospitals in Greece, between November 2014 and December 2016. Susceptibility testing of imipenem, imipenem-relebactam, meropenem, doripenem, gentamicin, and colistin was performed using broth microdilution. Additionally, MICs of ceftazidime-avibactam, fosfomycin, and tigecycline were determined by MIC Test Strips. MICs were interpreted per EUCAST breakpoints. Imipenem-relebactam MICs were interpreted using the breakpoints proposed for imipenem. Carbapenemase genes were detected using PCR. Whole genome sequencing was performed for selected isolates. Imipenem-relebactam inhibited 98.0% of the KPC-producing isolates at ≤ 2mg/L (MIC50/90, 0.25/1mg/L) and was considerably more active than imipenem (MIC50/90, 32/> 64mg/L). Reduced activity of imipenem-relebactam was rarely detected (2%) and was associated with chromosomal factors (ompK35 disruption and/or mutated ompK36). Only ceftazidime-avibactam showed in vitro activity comparable to imipenem-relebactam (99.6% susceptible). Relebactam provided only weak potentiation of imipenem activity against K. pneumoniae with class D OXA-48-like enzymes. Relebactam exhibited strong potential for restoring the in vitro activity of imipenem against KPC-producing K. pneumoniae, lowering the imipenem MIC50 and MIC90 from 32 to 0.25mg/L, and from > 64 to 1mg/L, respectively. Production of KPC carbapenemase represents the main cause of carbapenem resistance among K. pneumoniae in Greek hospitals (66.5%), and this carbapenemase appears to be very well inhibited by relebactam.
Read full abstract