MAX phases are considered to be promising microwave absorbing materials in fifth-generation (5G) communications, but their high electrical conductivity causes impedance mismatching, weakening their ability to absorb microwaves. Here, we present a universal preoxidation strategy to improve the impedance matching and the microwave absorption performance of a Ti3AlC2 MAX phase absorbing material. The microwave absorption properties of Ti3AlC2 particles were enhanced after preoxidation at temperatures of 500-700 °C for only 30 min in air, as compared with unoxidized Ti3AlC2 particles. More interestingly, the 600 °C-preoxidized Ti3AlC2 material reached a minimum reflection loss (RLmin) value of -50.56 dB at 8.87 GHz, superior to -12.36 dB at 12.82 GHz for the original Ti3AlC2 material. The preoxidized Ti3AlC2 particles were covered by a thin oxidation layer comprising both amorphous TiO2 (a-TiO2) and rutile TiO2 (R-TiO2). The oxidation layer endows the preoxidized Ti3AlC2 particles with good impedance matching, and a large number of nano-interfaces of a-TiO2/R-TiO2 and micro-interfaces of a-TiO2/Ti3AlC2 also contribute to the dielectric loss mechanism, thus improving its microwave absorption ability. This work provides a practical strategy for the fundamental study and the optimal design of MAX microwave absorbing materials.
Read full abstract