Abstract The basal plane inert sites and inadequate intrinsic dielectric relaxation are the major bottlenecks limiting the electromagnetic microwave (EMW) absorption performance of transition metal tellurides (TMTs). Here, an effective dual defect model based on electron polarization relaxation is established on iron telluride (FeTe) flakes via one‐step O2 plasma treatment. Therefore, the basal plane inert sites of FeTe are activated by Te vacancies and O incorporation, which form abundant polarization centers, resulting in charge redistribution and increased dipole site density, thereby effectively optimizing dielectric relaxation loss. Consequently, the optimal EMW attenuation performance achieves a minimum reflection loss exceeding −69.6 dB at a thickness of 2.2 mm, with an absorption bandwidth of up to 4.9 GHz at a thickness of 1.3 mm. Besides, FeTe with dual defect exhibits a prominent radar cross‐section reduction of 42 dBsm, indicating excellent radar wave attenuation capability. This study illustrates an innovative model system for elucidating dielectric relaxation loss mechanisms and provides a feasible approach to developing high‐loss TMTs‐based absorbers.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
13513 Articles
Published in last 50 years
Articles published on Microwave Absorption
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
13570 Search results
Sort by Recency