Insulin's microvascular actions and their relationship to insulin's metabolic actions have not been well studied in adults with type 1 diabetes mellitus (T1DM). We compared the metabolic and selected micro- and macrovascular responses to insulin by healthy adult control (n = 16) and subjects with T1DM (n = 15) without clinical microvascular disease. We measured insulin's effect on 1) skeletal muscle microvascular perfusion using contrast-enhanced ultrasound (CEU), 2) arterial stiffness using carotid-femoral pulse-wave velocity (cfPWV) and radial artery pulse wave analysis (PWA), and 3) metabolic insulin sensitivity by the glucose infusion rate (GIR) during a 2-h, 1 mU/min/kg euglycemic-insulin clamp. Subjects with T1DM were metabolically insulin resistant (GIR = 5.2 ± 0.7 vs. 6.6 ± 0.6 mg/min/kg, P < 0.001). Insulin increased muscle microvascular blood volume and flow in control (P < 0.001, for each) but not in subjects with T1DM. Metabolic insulin sensitivity correlated with increases of muscle microvascular perfused volume (P < 0.05). Baseline measures of vascular stiffness did not differ between groups. However, during hyperinsulinemia, cfPWV was greater (P < 0.02) in the T1DM group and the backward pulse wave pressure declined with insulin only in controls (P < 0.03), both indices indicating that insulin-induced vascular relaxation in controls only. Subjects with T1DM have muscle microvascular insulin resistance that may precede clinical microvascular disease.NEW & NOTEWORTHY Using contrast ultrasound and measures of vascular stiffness, we compared vascular and metabolic responses to insulin in patients with type 1 diabetes with age-matched controls. The patients with type 1 diabetes demonstrated both vascular and metabolic insulin resistance with more than half of the patients with diabetes having a paradoxical vasoconstrictive vascular response to insulin.
Read full abstract