Fourier transform techniques were used to determine the macroturbulent velocity under the condition that mictoturbulent and stellar rotation velocities are not known. In order to distinguish the effects of rotation from macroturbulence effects in slowly rotating stars, primarily the main lobe of residual Fourier transforms of the observed lines, which were taken from the solar spectrum and the spectra of two other stars, was used. This case of Fourier analysis of spectral lines is the most complicated one. The end results were in a satisfactory agreement with the data obtained using different methods. The average values of microturbulent, macroturbulent, and rotation velocities were 0.85, 2.22, and 1.75 km/s for the Sun as the star; 0.58, 1.73, and 0.78 km/s for HD 10700; and 1.16, 3.56, and 6.24 km/s for HD 1835. It was found that the macroturbulent velocity decreases with height in the atmosphere of the Sun and HD 1835. In the case of HD 10700, the macroturbulent velocity did not change with height, and the determined rotation velocity was two times lower than the one obtained using other methods. It was concluded that Fourier transform techniques are suitable for determining the velocities in atmospheres of solar-type stars with very slow rotation.