BackgroundProximal tubular cells (PTCs) play a critical role in the progression of diabetic kidney disease (DKD). As one of important progenitor markers, CD133 was reported to indicate the regeneration of dedifferentiated PTCs in acute kidney disease. However, its role in chronic DKD is unclear. Therefore, we aimed to investigate the expression patterns and elucidate its functional significance of CD133 in DKD.MethodsData mining was employed to illustrate the expression and molecular function of CD133 in PTCs in human DKD. Subsequently, rat models representing various stages of DKD progression were established. The expression of CD133 was confirmed in DKD rats, as well as in human PTCs (HK-2 cells) and rat PTCs (NRK-52E cells) exposed to high glucose. The immunofluorescence and flow cytometry techniques were utilized to determine the expression patterns of CD133, utilizing proliferative and injury indicators. After overexpression or knockdown of CD133 in HK-2 cells, the cell proliferation and apoptosis were detected by EdU assay, real-time cell analysis and flow analysis. Additionally, the evaluation of epithelial, progenitor cell, and apoptotic indices was performed through western blot and quantitative RT-PCR analyses.ResultsThe expression of CD133 was notably elevated in both human and rat PTCs in DKD, and this expression increased as DKD progressed. CD133 was found to be co-expressed with CD24, KIM-1, SOX9, and PCNA, suggesting that CD133+ cells were damaged and associated with proliferation. In terms of functionality, the knockdown of CD133 resulted in a significant reduction in proliferation and an increase in apoptosis in HK-2 cells compared to the high glucose stimulus group. Conversely, the overexpression of CD133 significantly mitigated high glucose-induced cell apoptosis, but had no impact on cellular proliferation. Furthermore, the Nephroseq database provided additional evidence to support the correlation between CD133 expression and the progression of DKD. Analysis of single-cell RNA-sequencing data revealed that CD133+ PTCs potentially play a role in the advancement of DKD through multiple mechanisms, including heat damage, cell microtubule stabilization, cell growth inhibition and tumor necrosis factor-mediated signaling pathway.ConclusionOur study demonstrates that the upregulation of CD133 is linked to cellular proliferation and protects PTC from apoptosis in DKD and high glucose induced PTC injury. We propose that heightened CD133 expression may facilitate cellular self-protective responses during the initial stages of high glucose exposure. However, its sustained increase is associated with the pathological progression of DKD. In conclusion, CD133 exhibits dual roles in the advancement of DKD, necessitating further investigation.
Read full abstract