This study examines the microstructure, mechanical properties, and precipitation behavior of 1000 MPa grade GEN3 steel when subjected to various quenching processes, with a focus on the quench and partition (Q&P) technique. The Q&P-treated samples achieved 1300 MPa tensile strength and demonstrated superior yield strength, attributed to their refined substructure and their large amounts of precipitates. The quenched samples exhibited the thinnest martensite laths due to the highest martensite volume. Despite the as-annealed samples having the smallest grain size, the Q&P treatment resulted in optimal microstructural refinement results and a high dislocation density, reaching 1.15 × 1015 m−2. Analysis of the precipitates revealed the presence of V8C7, M7C3, M2C, and Ti(C, N) across various heat treatments. The application of the McCall–Boyd method and the Ashby–Orowan correction model indicated that quench and tempered (Q&T) samples contained the largest volume of fine precipitates, contributing to their high yield strengths. These findings offer valuable insights for optimizing heat treatment processes to develop advanced high-strength steels for industrial applications.