The crystal growth history of an Au-rich sedimentary pyrite nodule from the Timmins-Porcupine Au camp, Ontario, Canada, has been investigated using Electron Backscattered Diffraction and Laser Ablation Inductively Coupled Plasma Mass Spectrometry techniques to study the crystallographic processes controlling metal deportment in the pyrite structure. Results show four distinct growth stages characterized by different pyrite microstructures, crystal forms and trace element compositions. A direct link is observed between the growth of octahedral facets in pyrite and the development of primary (non-tectonic) subgrain boundaries. Furthermore, zones with a high abundance of subgrain boundaries have the highest Au, As, Ag and Cu (and other metals) contents – suggesting metal distribution is linked to the development of microstructures. Finer-grained aggregates are characterized by higher grain boundary density than in coarse areas, making higher trace element concentrations inversely proportional to grain size. Our results indicate that the high Au concentrations (~100 ppm) in pyrite represent a primary feature related to nodule growth, instead of secondary enrichment processes, and highlight the possibility that sediment-hosted pyrite nodules could represent a metal-rich geochemical reservoir for the formation of younger orogenic Au deposits.